Bioinspired red blood cell membrane-encapsulated biomimetic nanoconstructs for synergistic and efficacious chemo-photothermal therapy

Pei Wang, Fuquan Jiang, Biaoqi Chen, Hanxiao Tang, Xiaojiao Zeng, Duanhua Cai, Mingzhi Zhu, Ruimin Long, Dayun Yang, Ranjith Kumar Kankala, Shibin Wang, Yuangang Liu



| PII:           | S0927-7765(20)30072-2                          |
|----------------|------------------------------------------------|
| DOI:           | https://doi.org/10.1016/j.colsurfb.2020.110842 |
| Reference:     | COLSUB 110842                                  |
| To appear in:  | Colloids and Surfaces B: Biointerfaces         |
| Received Date: | 4 October 2019                                 |
| Revised Date:  | 30 January 2020                                |
| Accepted Date: | 1 February 2020                                |
|                |                                                |

Please cite this article as: Wang P, Jiang F, Chen B, Tang H, Zeng X, Cai D, Zhu M, Long R, Yang D, Kankala RK, Wang S, Liu Y, Bioinspired red blood cell membrane-encapsulated biomimetic nanoconstructs for synergistic and efficacious chemo-photothermal therapy, *Colloids and Surfaces B: Biointerfaces* (2020), doi: https://doi.org/10.1016/j.colsurfb.2020.110842

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier.

# Bioinspired red blood cell membrane-encapsulated biomimetic nanoconstructs for synergistic and efficacious chemo-photothermal therapy

Pei Wang,<sup>a1</sup> Fuquan Jiang,<sup>b1</sup> Biaoqi Chen,<sup>c</sup> Hanxiao Tang,<sup>c</sup> Xiaojiao Zeng, <sup>a</sup> Duanhua Cai,<sup>c</sup> Mingzhi Zhu,<sup>c</sup> Ruimin Long,<sup>c</sup> Dayun Yang,<sup>e</sup> Ranjith Kumar Kankala,<sup>c,d</sup> Shibin Wang, <sup>a,d</sup> Yuangang Liu<sup>\*c,d,f</sup>

<sup>a</sup>College of Materials and Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
<sup>b</sup>School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target
Research, Xiamen University, Xiamen, Fujian 361021, P. R. China
<sup>c</sup>College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China

<sup>d</sup>Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen, Fujian 361021, P. R. China <sup>e</sup>School of Basic Medical Science, Fujian Medical University, Fuzhou, Fujian 350122, P. R. China <sup>f</sup>Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China <sup>1</sup> These authors contributed equally to this work.

Corresponding author: Yuangang Liu, E-mail: ygliu@hqu.edu.cn

### **Graphical abstract**



# Highlights

- Nanoparticles coated with red blood cell membranes (RmGIB NPs) were developed.
- RmGIB NPs loaded indocyanine green and a gambogic acid.
- RmGIB NPs could prolong long-term circulation *in vivo*.
- RmGIB NPs could provide synergistic chemo-photothermal therapy for tumor.

### Abstract

Recently, the fabrication of nanotechnology-based co-delivery systems has garnered enormous interest for efficacious cancer therapy. However, these systems still face certain challenges such as codelivery of drugs with different chemistries,

inadequate loading efficiency, immune rejection resulting in the rapid clearance and substantially poor bioavailability in vivo. To address the challenges, we have developed a biomimetic and stable design based on bovine serum albumin (BSA) nanoparticles that are encapsulated with a hydrophilic photothermal agent, indocyanine green (ICG), as well as a hydrophobic agent, gambogic acid (GA), via the desolvation method. Furthermore, these nanoconstructs have been coated with the red blood cell membranes (RBCm), which exhibit pronounced long-term circulation in addition to avoiding premature leakage of drugs. RBCm-coated BSA nanoparticles show a higher affinity towards both GA and ICG (RmGIB NPs), resulting in high loading efficiencies of 24.3  $\pm 1.2\%$  and  $25.0 \pm 1.2\%$ , respectively. Moreover, the bio-efficacy investigations of these biomimetic constructs (RmGIB NPs) in cells in vitro as well as in tumor-bearing mice in vivo confirm augmented inhibition, demonstrating potential synergistic chemophotothermal therapeutic efficacy. Altogether, we provide an efficient delivery platform for designing and constructing BSA nanovehicles toward synergistic and effective codelivery of therapeutics.

**Keywords:** Biomimetic nanoparticles, Gambogic acid, Bovine serum albumin, Red blood cell membrane, Chemo-photothermal therapy

### Introduction

Among various traditional therapeutic modes available, the chemotherapy using effective drugs has attracted significant attention from researchers as it is one of the most promising alternatives for treating a wide range of tumors[1]. In spite of the

progress over the decades in improving the bioavailability of drugs and other innovative strategies, current research on nanomedicine has shifted its focus toward the combinatorial therapy, either by using a co-delivery approach that deliver multiple agents or by applying external stimuli such as light, ultrasound or a magnetic field for exhibiting synergistic therapeutic efficiency through different mechanisms[2, 3]. In this framework, photothermal therapy (PTT), a non-invasive approach, is one of the advanced therapeutic strategies often applied for localized tumor ablation mediated by photosensitizers, which could offer minimal damage to the adjacent normal tissues[4, 5]. However, the utilization of PTT alone has no significant tumor ablating effects due to the issues related to the inadequate penetration depth of light, resulting in the development of thermoresistance and substantial uncontrolled malignancy in various visceral organs[6, 7]. These consequences necessarily demand breakthroughs to achieve better therapeutic effects. In an attempt to address this need, we hypothesize that integrating multiple therapeutic strategies, for instance, chemo-photothermal therapy, could offer synergistic tumor inhibition effects while concomitantly minimizing the side effects associated with the chemotherapeutic agents and overcoming the problems related to the light-based therapy[8, 9].

Indocyanine green (ICG) is one of the near infrared (NIR) dyes approved United States Food and Drug Administration (FDA), which acts on ablating tumors by not only transforming the absorbed light energy to heat *via* PTT but also by generating deadly singlet oxygen *via* photodynamic therapy (PDT)<del>, respectively</del>. To address the poor stability issues and augment tumor specificity, several carrier systems have been

fabricated to encapsulate ICG for diverse biomedical applications, such as polyallylamine, calcium phosphosilicate, lipid-polymer, and perfluorocarbon[10]. Besides, gambogic acid (GA) extracted from the Garcinia hanburryi tree has been demonstrated to be a potent natural and wide anticancer product and an inhibitor of the 90-kDa heat shock protein (Hsp90), a key protein for inducing thermoresistance in the hypothermic cell during PTT[5]. However, the clinical application of GA has been limited by its poor water solubility ( $<5 \ \mu g \ mL^{-1}$ ) and short half-life ( $<4 \ h$ )[11, 12], therefore it is critical to improve solubility and prolong the circulation of GA when combining chemotherapy with PTT.

More often, the fabrication of various nanoparticles-based drug delivery carriers suffers from a significant limitation of low drug loading efficiency because in most of the cases, the affinity between the guest molecules and host is managed by weak interactions such as physical adsorption through hydrogen bonding, electrostatic interactions, hydrophobic interactions and or chemical crosslinking, which subsequently also results in premature leakage, significantly affecting the therapeutic dosage regimen in cancer therapy[13]. On the contrary, self-assembled drug nanoconstructs could be an alternative to overcome the limitation of poor delivery efficiency as well as loading ability. However, these constructs also face the shortcomings of poor stability and failing to achieve long-term circulation due to rapid clearance in the blood. To address these limitations, it is convenient to utilize biomolecules such as proteins as carriers owing to their amphipath and threedimensional (3D) architectures. Bovine serum albumin (BSA) is one such biomolecule

that has garnered enormous interest from researchers for use in drug delivery systems due to its advantageous features: cost-effectiveness, ease of preparation and purification, as well as unusual ligand-binding properties [14]. Paclitaxel-albumin nanoparticle (nabpaclitaxel, Abraxane<sup>®</sup>) is one such protein-based the marketed formulation marketed to delivery paclitaxel[15], indeed but nanomedicine has been facing a significant obstacle in promoting the clinical formulations due to their heterogeneity in elimination by the reticuloendothelial system (RES), resulting in impaired long-term circulation and subsequently reduced in their passive accumulation in tumor tissue[16, 17, 18, 19]. In an attempt to address this issue, several advancements have been made such as surface modification to combat recognition via various approaches, and diverse morphologies based on particle size, shape, and flexibility, among others[20, 21, 22, 23]. In this framework, biomimetic drug carriers have been reported in solving this issue of for extending circulation time by using, for example, red blood cells (RBCs) as carriers to deliver enzymes and drugs. Zhang and colleagues firstly reported stable red blood cell membrane (RBCm)-camouflaged polymeric nanoparticles with a longer elimination half-life over conventional polyethylene glycol (PEG)-coated nanoparticles. These constructs possessed antigenic and immunogenic properties as potential haptenes, owing to their intrinsic properties (membrane protein, CD47)[24, 25, 26]. Since then, numerous efforts have been made in the research of RBCm and other cell membranes for fabricating biomimetic drug delivery system[27, 28, 29, 30].

Inspired by these facts, herein, we fabricated innovative RBCm-coated BSA nanoconstructs encapsulated with GA (hydrophobic drug) and ICG (hydrophilic agent)

for achieving long-term circulation in the blood toward to be used in synergistic chemo-/photothermal therapy. Initially, GA and ICG were encapsulated in the BSA network (GIB nanoconstructs) using the solvent displacement method and further coated with the RBCm, which was extracted from the blood of Balb/c nude mice (Figure 1)[31]. Moreover, on the basis of the simplicity of this assembly, with intentionally selected hydrophobic/hydrophilic agents and different kinds of protein, the bioinspired strategy could offer various ways for the design of clinically translatable nanocarriers to achieve a highly efficient therapy for diverse diseases.



**Figure 1.** Schematic of the preparation process of the for RBCm-coated BSA nanoparicles showing higher affinity towards both GA and ICG (RmGIB NPs) to be used in a synergistic chemo-therapy for cancer.

#### **Experimental Section**

#### Materials

ICG was obtained from Sangon Biotech Co. Ltd. (Shanghai, China), GA was purchased from Desite Biological Co. Ltd. (Chengdu, China), BSA from Aladdin Biochemical Technology Co. Ltd. (Shanghai, China) and glutaraldehyde-was purchased from Xilong Scientific Co. Ltd. (Guangzhou, China). Dulbecco's Modified Eagle Medium (DMEM), fetal bovine serum (FBS), penicillin, and streptomycin were purchased from Biological Industries Ltd. (Hertzliya Pituach, Israel). Mammary epithelial basal medium (MEBM) along with and the additives were obtained from Lonza/Clonetics Corporation (Basel, Switzerland). MCF-10A cells (human breast epithelial cell line), MDA-MB-231 cells (human breast adenocarcinoma cell line), MCF-7 cells (human breast adenocarcinoma cell line), HeLa cells (human cervical cancer cells) and L929 cells (mouse fibroblast cell line) were obtained from the Type Culture Collection of the Chinese Academy of Sciences (CAS, Shanghai, China). MTT Cell Proliferation and Cytotoxicity Assay Kit and Calcein-AM/PI Double Stain Kit were purchased from KeyGene Biotech (Nanjing, China). 4',6-Diamidino-2phenylindole (DAPI) staining solution was acquired from Solarbio Co. Ltd. (Beijing, China) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil,  $\lambda_{Ex/Em} = 549/565$  nm) was acquired from Beyotime Biotechnology Co. Ltd. (Shanghai, China).

#### **Preparation of GIB NPs**

The GIB NPs were prepared using a solvent displacement approach[15]. Briefly,

the GA and ICG were initially dissolved in methanol (1 mL) at different concentrations. The mixture was added dropwise to BSA in phosphate-buffered saline (PBS, pH-7.4) with vigorous stirring and then glutaraldehyde was added and stirred at room temperature for 24 h. Finally, the resultant <del>product of GIB</del> NPs were collected and washed several times using deionized water.

#### **Extraction of RBCm-derived vesicles**

The whole blood from mice (6–8 weeks, Huafukang Biotechnology Co. Ltd., Beijing, China) was first collected in a heparin-coated blood collection tube through retroorbital sinus puncture and then the blood was centrifuged at 1000 rpm for 5 min at 4 °C for separating plasma. The resultant RBCs were washed with PBS three times and then suspended in deionized water at 4 °C for 60 min. The hemoglobin was removed after centrifuging at 10000 rpm for 5 min, and then the RBCm was washed with deionized water several times. The collected RBC ghosts were sonicated using a bath sonicator (KQ5200DE, Kun Shan Ultrasonic Instruments Co. Ltd.) for 5 min at 40 kHz frequency and 200W power[31]. Furthermore, the size of the RBCm-derived vesicles was measured by dynamic light scattering (DLS; NanoBrook Omni, Brookhaven Instruments Co. Ltd.). Briefly, the RBCm was stained with DiI (excitation/emission  $\lambda_{Ex/Em} = 549/565$  nm) to monitor the RBCm-coated NPs in the subsequent process.

#### **Preparation of RBCm-cloaked NPs**

RmGIB NPs were fabricated by dispersing and fusing RBCm vesicles with GIB NPs according to in the appropriate ratio using bath sonicator at a frequency of 40 kHz

and a power of 200 W for 3 min. To conduct RBCm cloaking, RBCm labeled with DiI in the previous step was used. Due to specific interactions between the fluorescent probe and membrane-bonded protein, a red fluorescence was emitted and could be detected by confocal laser scanning microscopy (CLSM; 100× oil objective lens, Leica TCS SP8, Wetzlar, Germany). Subsequently, the amount of RBCm-coated GIB NPs was quantified by flow cytometry (Moflo-XDP, Beckmancoulter). RmGIB NPs were dissolved in DMSO solution, and the concentration of GA and ICG were then determined by using UV-Vis spectroscopy at a maximum wavelength of 360 nm and 780 nm, respectively, correlating to their corresponding pre-recorded calibration curve. The loading capacity (LC) of GA and ICG was calculated by the following formula:

LC (%) = 
$$M_D/(M_N + M_D) \times 100$$
 (1)

where  $M_D$  is the loading weight of drug (GA or ICG) and  $M_N$  is the loading weight of RmGIB NPs.

#### **Physical characterizations**

The loading efficiency as well as and the confirmation of the appropriate ratios for the different drugs were confirmed by scanning the GIB NPs using UV-Vis-NIR spectroscopy. The particle diameter and distribution, as well as the surface zeta potential of GIB NPs and RmGIB NPs (n=3), were obtained by DLS measurements. Fourier transform infrared spectroscopy (FTIR; Thermo Scientific Nicolet iS 50) was used to analyze the characteristic chemical functionalities of the prepared GIB NPs <del>as</del> <del>well as</del> and RBCm-coated nanocomposites. Morphological attributes were determined

by transmission electron microscopy (TEM; Hitachi S-4800, Tokyo Japan). The samples for TEM observations were prepared by depositing them on 300-mesh copper grids at 100 kV after negative staining by phosphotungstic acid for 1 min and then air-drying the slides for 12 h.

#### In vitro release of drugs

To study the release efficiencies of both drugs, GIB NPs and RmGIB NPs were placed separately in a dialysis bag and suspended in the buffer (20 mL, 10 mM, pH 7.4) containing 1% Tween-80. Furthermore, the samples containing buffer were placed in a horizontal shaker maintained at 37 °C and stirred at 100 rpm. A 2-mL aliquot of dispersion solution was collected at the desired time points and a fresh equivalent volume of PBS was replenished. The released amounts of GA and ICG in the solution were measured by correlating their corresponding absorbance values obtained using UV–Vis-NIR spectrometry. All the tests and including measurements were carried out in triplicate.

#### NIR-induced photothermal efficacy in vitro

An aqueous dispersion of GIB NPs (1 mL, 0.1 mg mL<sup>-1</sup>) or RmGIB NPs (with GIB NPs concentration equivalent to 0.1 mg mL<sup>-1</sup>) placed in a transparent quartz vial (4 mL) was irradiated with a fiber-coupled continuous semiconductor diode laser (MDL-N-808nm-10 W, New Industries Optoelectronics Technology Co., Ltd. Changchun, China) at a power density of 1.5 W cm<sup>-2</sup> for 5 min. Furthermore, the temperature was monitored with a thermal infrared imaging camera (Tis65, USA). After repeating for five cycles,

the UV-Vis-NIR absorbance spectra of the solution before and after irradiation were recorded.

#### Anticancer efficacy in vitro

HeLa cells were seeded in a 96-well plate at a density of  $1 \times 10^4$  cells per well and cultured for 24 h at 37 °C. Furthermore, the treatments were continued by replacing the media with fresh media containing ICG (20 µg mL<sup>-1</sup>), RmGB NPs (GA concentration equivalent to 20 µg mL<sup>-1</sup>), RmGIB NPs (ICG concentration equivalent to 20 µg mL<sup>-1</sup> and GA concentration to 20 µg mL<sup>-1</sup>), respectively. After 2 h of incubation, the corresponding wells were irradiated with an 808nm NIR laser (1.5 W cm<sup>-2</sup>) for 3 min. The media were replaced with fresh media and then incubated for 18 h. Afterwards further, the media were replaced with 100 µL of fresh medium and 10 µL MTT (0.5 mg mL<sup>-1</sup>) and then continuously incubated for 4h. Subsequently afterward, 150 µL of DMSO was added into each well after removing the media. The relative cell viability was calculated according to the following equation:

Cell viability (%) = 
$$(OD_{treated} - OD_{blank})/(OD_{control} - OD_{blank}) \times 100$$
 (2)

where  $OD_{treated}$  is the absorbance of the group of microparticles,  $OD_{blank}$  is the absorbance of the group with no cells in well, and  $OD_{control}$  is the control group.

A calcein-AM/PI assay was also employed to visually explore the antitumor activity of RmGIB NPs *in vitro*. HeLa cells were seeded in the confocal dishes at a density of  $2 \times 10^4$  cells per well with 2 mL of media and cultured for 24 h at 37 °C.

HeLa cells were stained with calcein-AM/PI stain after being treated with nanoparticles and NIR irradiation and then observed using-under CLSM.

#### Cellular uptake of GIB NPs and RmGIB NPs

HeLa cells and MCF-7 cells were seeded at a density of  $2 \times 10^5$  per mL on a 24well plate. The media were replaced with free media containing GB NPs and GIB NPs after incubating overnight. The media were then removed and the cells were washed twice using PBS for removing the residual nanoparticles after incubating several hours. The cells growing on the dish glasses were stained with DAPI, put on the microscope slides and further the cells were observed using CLSM.

#### In vivo chemo-photothermal efficacy

All experimental protocols utilizing animals were performed according to the Experimental Animal Ethics Committee of Fujian Medical University following the guidelines of the National Institute of Health Animal Care and the Animal Management Rules of the Ministry of Health of the People's Republic of China. Nude mice (female, 6 weeks old) bearing subcutaneous HeLa tumors approximately (approx. 100 mm<sup>3</sup> in volume) were randomly divided into five groups: (1) 200  $\mu$ L of PBS with NIR laser irradiation at the power density of 1.5 W cm<sup>-2</sup> for 5min; (2) 200  $\mu$ L of free GB (1 mg mL<sup>-1</sup>); (3) 200  $\mu$ L of free ICG (1 mg mL<sup>-1</sup>) with NIR laser irradiation (1.5 W cm<sup>-2</sup>, 5min); (4) 200  $\mu$ L of RmGIB NPs, (5) 200  $\mu$ L of RmGIB NPs with NIR laser irradiation (1.5 W cm<sup>-2</sup>, 5min). All the nanoparticles were injected intravenously into the mice *via* the tail vein. The mouse body weight and the volume of the tumor were measured every

day and calculated as tumor volume =  $(\text{tumor length}) \times (\text{tumor width})^2/2$ . The relative tumor volume (RTV) rate was calculated according to the following equation:

RTV (%) = 
$$V_T / V_0 \times 100$$
 (3)

where  $V_T$  is the tumor volume after treatment and  $V_0$  is the tumor volume before treatment. Thermal imaging was recorded by an infrared thermal imaging camera (Tis65, Fluke, USA) before and after irradiation.

#### In vivo imaging and biodistribution of nanocomposites

After the tumor reached 100 mm<sup>3</sup> in volume, the samples 200-µL samples of free ICG, GIB NPs and RmGIB NPs (in terms of ICG 1 mg mL<sup>-1</sup>) were intravenously injected into mice and fluorescence images (filter set  $\lambda_{Ex/Em}$  of ICG: 630/700 nm) were captured by a Carestream imaging system (Carestream FX Pro, Brookhaven Instruments Co. Ltd.). After 12 h, tumor-bearing mice were sacrificed by intraperitoneal injection with 4% chloral hydrate and then dissected at the autopsy laboratory. The major organs (heart, liver, spleen, lung, and kidneys) and tumors were collected and the distribution of free ICG, GIB NPs, and RmGIB NPs *ex vivo* was determined. After completion of the experiment, the rate's body, viscus and tumor tissue were collected for harmless treatment.

#### Statistical analysis

The statistical significance between two sets of data was calculated using Student's *t*-test. A *p* value of < 0.05 was considered to be statistically significant.

#### **Results and discussion**

#### **Physicochemical characterizations**

As shown in Figure S1, the TEM observations indicated that the albumin-bound (nab<sup>TM</sup>) technology resulted in uniform and discrete GB NPs of different sizes. Further, the hydrodynamic sizes (Figure S2) were obtained from DLS measurements, with resulted in 0.2%, 0.4% and 0.8% concentration of BSA as a surfactant providing physical stability in solution. The results showed that the ellipsoidal size of GB NPs in 0.2% BSA was much bigger than the spherical size at 0.4% and 0.8% BSA, which indicated that the specific surface area of GB NPs diminished while in with a lack of BSA. However, the hydrodynamic sizes of GB NPs were bigger than from TEM observation, probably due to the interaction between surrounding water molecules and nanoparticles. The low polydispersity index (PDI) values of  $0.22 \pm 0.01$ ,  $0.19 \pm 0.01$ and  $0.16 \pm 0.03$  for 0.2%, 0.4% and 0.8% BSA, respectively, further supported the uniform size and good dispersibility of GB NPs in water. When the organic solution containing the hydrophobic drugs was dropped into the aqueous solution, the organic solution was dispersed into tiny droplets due to the shear force provided by high-speed rotation of the aqueous solution. Furthermore, BSA, as a surfactant, formed a film on the surface of the hydrophobic drugs to prevent contact between the drugs. When the concentration of BSA was low, it wasn't sufficient to prevent contact between the drugs, therefore the nanoparticle size was larger. Based on these results, 0.4% BSA was chosen as the better condition for further studies. Furthermore, GIB NPs were prepared with

different ratios of GA to ICG to determine the optimal proportion for combination therapy. Figure 2A depict that with of proportion of shows a decrease in the mean particle size of GIB NPs, proportional to the amount of GA, along with a reduction in the zeta potential, stabilizing at around -40 mV, indicates the stability of the constructs in aqueous solution[32, 33]. Further, the UV-Vis-NIR spectra of GIB NPs (Figure 2B) at different ratios of GA to ICG showed that absorbance at 780 nm (the maximum absorption wavelength of ICG) increased with a larger amount of ICG, indicating the higher loading capacity of ICG. However, the particle size of GIB NPs was smaller compared to GB NPs at the respective conditions which might be due to partial leakage of ICG from the aqueous phase, resulting in smaller droplets in the process of formation of GIB NPs. Based on these considerations, the optimal conditions for GIB NPs are a GA: ICG loading <del>amount</del> ratio of 1.04:1 and a mixing ratio of 8: 12, which were chosen in <del>further</del> subsequent experiments.

Before extracting the RBCm through *via* hemolytic treatment in a hypotonic solution, the cells were observed under a bright-field microscope. As shown in Figure S3a, the images indicated that the RBCs kept their double-concave round cake shape. By contrast, the RBCm resulted in an indefinite shape after extraction from RBCs (Figure S3b) and the mean size reduced from  $2.67 \pm 1.30 \mu$ m before sonication to  $1.01 \pm 0.08 \mu$ m after sonication, respectively (Figure S4), which is better for cloaking unique nanoparticles. After coating with RBCm, TEM images of RmGIB NPs (Figure 2F) depicted a characteristic core-shell structure, with a core and a uniform 10-nm thick outer membrane shell. To further confirm the RBCm coating over GIB NPs, the particle

size and the surface zeta potential of NPs were measured before and after RBCm coating (Figure 2D). Following membrane coating, the particle size of GIB NPs increased from 153.8  $\pm$  4.9 to 180.3  $\pm$  2.2 nm and the surface zeta potential changed from  $-41.3 \pm 2.4$  to  $-29.6 \pm 0.7$  mV, indicating that the RBCm was successfully coated over the nanoparticles through via the established electrostatic interactions between GIB NPs and the phospholipid bilayer. This fluorescence colocalization of GIB NPs (red fluorescence) and RBCm stained with DiI (yellow fluorescence) further indicated an intact core-shell structure of the nanoparticles (Figure S3). CLSM images (Figure S5) and flow cytometric profiles of RmGIB NPs with DiI (Figure S6) were measured to confirm the RBCm coating of GIB NPs. The above results further verify the successful coating of RBCm on the surface of GIB NPs. Furthermore, we determined the stability of RmGIB NPs in PBS and monitored the change of size and zeta potential by dynamic light scattering DLS (Figure 2E). The average hydrodynamic diameter of RmGIB NPs increased from  $180.3 \pm 2.2$  to  $204.0 \pm 4.7$  nm, while, the zeta potential increased from  $-29.6 \pm 0.7$  to  $-20.3 \pm 2.0$  mV. The changes in size and zeta potential were likely caused by the fusion of a small number of excess RBCm vesicles in the particle solution[26].



**Figure 2.** (A) Mean particle size and zeta potential of GIB NPs with different mixing ratios of GA to ICG. (B) UV-Vis-NIR spectra of GIB NPs from (A). (C) TEM images of GIB NPs in the ratio 8:12 (bar = 100 nm, 300k magnification in the inset). (D) Mean particle diameter and zeta potential of GIB NPs before (*left*) and following (*right*) RBCm coating. (E) DLS measurements of the size and surface zeta potential of RmGIB NPs over 14 days in PBS (pH 7.4). (F) TEM images of RmGIB NPs in the ratio 8:12. Data are expressed as the mean  $\pm$  SD of three independent experiments.

#### In vitro photothermal properties of RmGIB NPs

Further, the UV-Vis-NIR spectra of various samples showed that the strong absorption of ICG in the nanoparticles as well as and the subsequently coated sample at around 808 nm barely changed compared to free ICG (Figure 3A), indicating that the preparation process for GIB NPs and RmGIB NPs has no significant influence on the stability of ICG. These results also provided evidence for RBCm coating of GIB NPs, where the absorption value of RmGIB NPs was higher than that of GIB NPs in the

wavelength range 400-600 nm due to absorption of the phospholipid bilayer. Therefore, the high NIR absorbance coefficient and excellent photostability of RmGIB NPs would obviously result in the substantial photothermal performance. Furthermore, the photothermal efficiency of ICG was determined by measuring the temperature of the samples after irradiation with light (power density: 1.5 W cm<sup>-2</sup>). The results indicated that the temperature of RmGIB NPs increased in a concentration-dependent manner, indicating the efficiency of ICG in transforming light energy to heat energy (Figure 3B). Interestingly, it was observed from the results that the temperature of the sample reached saturation at 39.5 °C for 50 µg mL<sup>-1</sup> ICG and then reduced, which might be due to the rapid hydrolysis of ICG. However, the heat generated at that particular temperature still exchanged with the environment. Moreover, the sample, free ICG, GIB NPs, and RmGIB NPs presented similar temperature profiles, suggesting a negligible impact of the membrane coating (Figure 3C). The temperature of RmGIB NPs increased rapidly to 54.8°C for 100 µg mL<sup>-1</sup> ICG during the NIR laser irradiation (power density: 1.5 W cm<sup>-2</sup>) for 5 min, while whereas the temperature of GB NPs and water increased by only about 1°C.



**Figure 3.** (A) UV-Vis-NIR absorption spectra of GIB NPs and RmGIB NPs. (B) Temperature elevation of water and RmGIB NPs at different concentrations (5, 10, 20, 50, and 100  $\mu$ g mL<sup>-1</sup> in terms of ICG) irradiated by NIR laser (808 nm, 1.5 W cm<sup>-2</sup>) for 5min. (C) Temperature curves of water, GB NPs, free ICG, GIB NPs, and RmGIB NPs exposed to an 808 nm laser at a power density of 1.5 W cm<sup>-2</sup> for 5 min. The concentration of ICG was the same for free ICG, GIB NPs and RmGIB NPs (50  $\mu$ g mL<sup>-1</sup> in terms of ICG). Cumulative release profiles of GA from (D) GB NPs and RmGB NPs and (E) GIB NPs and RmGIB NPs in PBS (pH 7.4). (F) Cumulative release profiles of ICG from GIB NPs and RmGIB NPs in PBS (pH 7.4). Data are expressed as the mean ± SD of three independent experiments.

#### In vitro GA loading and release from RmGIB NPs

The loading capacity of GA from GB NPs was measured as  $79.0 \pm 4.4\%$ , whereas that from GIB NPs decreased with decreasing ratio of GA to ICG due to the increasing

content of hydrophilic ICG in the nanoparticles from Figure 3B. Before the in vitro release study, the loading amounts of GA and ICG at ratio 8:12 in RmGIB NPs were determined as  $24.3 \pm 1.2\%$  and  $25.0 \pm 1.2\%$ , respectively. The high loading capacity can be ascribed to the following factors: (1) the solvent displacement method; (2) the electrostatic interaction between the positively charged part of BSA and the negatively charged ICG, as well as conjugation and hydrophobic interaction between BSA and the agents. The formation process of nanoparticles resulted in a colloidal system consisting of a hydrophobic core surrounded by hydrophilic BSA[15]. The reason why the total loading capacity of GA and ICG did not reach that of GB NPs, was the decreasing amount of GA and leakage of the hydrophilic agent ICG in PBS. The results (Figure 3D, E, F) showed that the release of GA was sustained and slow in pH 7.4 PBS (simulating the physiological environment) and slower after RmGB NPs and RmGIB NPs, which confirmed the safety of RmGB NPs and RmGIB NPs in long-term blood circulation due to no drug leakage. Because GA and ICG need to pass through the phospholipid bilayer for release, there are hydrophobic interactions between them and the phospholipid.

#### In vitro antitumor performance

Further, The toxicity and antitumor efficacy of free GA were evaluated using normal cells and tumor cells (Figure S7, S9) for 24h and 48h, respectively. The results showed that GA exhibited great toxicity toward tumor cells and normal cells, even at a low concentration. The results showed that RmGIB NPs had lower toxicity toward

normal cells than free GA at a low concentration range from 0.2 µg mL<sup>-1</sup> to 1 µg mL<sup>-1</sup> (Figure S7). The results of the hemolysis test (Figure S8) showed that RmGIB NPs had good biocompatibility at the concentration range from 1  $\mu$ g mL<sup>-1</sup> to 12  $\mu$ g mL<sup>-1</sup>, but there had hemolysis phenomenon due to the increasing concentration of GA released from RmGIB NPs when concentration exceeded 12 µg mL<sup>-1</sup>. In further investigations of the anti-tumor efficacy of GB NPs, GIB NPs, and RmGIB NPs, the results indicated that the samples substantially exhibited anti-tumor activity, indicating the efficacy of GA (Figure S10, S11). To observe the cellular internalization of nanoparticles, both HeLa cells and MCF-7 cells were chosen as cell lines by staining the nucleus with DAPI (blue) against the red fluorescence of ICG from the sample. HeLa cells were cultured with GIB NPs and RmGIB NPs for 3h and the results were obtained from CLSM after staining with DAPI. From Figure 4, the red fluorescence of ICG was significantly observed inside and around the nuclei after endocytosis in 3 h. Furthermore, MCF-7 cells also endocytosed GIB NPs and RmGIB NPs in Figure S12 after culturing for 3h.



**Figure 4.** Confocal laser scanning microscopy images of HeLa cells incubated with (A) GIB NPs and (B) RmGIB NPs for 3 h (bar =  $25 \mu$ m).

The *in vitro* chemo-photothermal anticancer activity of RmGIB NPs was detected by MTT assay and calcein-AM/propidium iodide (PI) (live/dead) staining. Neither GA nor laser irradiation had a significant anticancer effect against HeLa cells at high cellseed density (Figure 5A). The cell viability rates of RmGIB NPs were  $68.99 \pm 4.87\%$ and  $12.27 \pm 1.53\%$  respectively without and NIR irradiation, respectively. Furthermore, the cell viability rate was  $39.39 \pm 5.46\%$  for photothermal therapy but there was no effect with chemotherapeutics. Under NIR irradiation, most of the cells co-cultured with RmGIB NPs were stained with red fluorescence by PI (Figure 5B), indicating that the live/dead staining corresponded to the MTT results. In addition, green fluorescence showed that the cells were alive in a control group, indicating that RmGIB NPs showed good anti-tumor effect and a significant combined therapeutic effect[34].



**Figure 5.** (A) Cell viabilities of HeLa cells with different treatments. (B) Confocal laser scanning microscopy images of live/dead staining of HeLa cells cultured with different materials without or with NIR laser irradiation (808 nm, 1.5 W cm<sup>-2</sup>) (scale bar = 200  $\mu$ m). Data are presented as the mean  $\pm$  SD (n = 5) and p-values are calculated using a two-sample Student's *t*-test, \*\*\*P < 0.001.

#### In vivo antitumor efficacy

Firstly, the Photothermal images (Figure 6A) of mice intravenously injected with

drugs or carriers confirmed that the temperature of RmGIB NPs group increased higher than GIB NPs group and free ICG group because of the easy metabolism of free ICG in vivo after laser irradiation[35]. This was consistent with the experimental results in Figure S13. The fluorescence images ex vivo showed that free ICG group had almost no fluorescence in tumor tissue, which also indicates that ICG did not remain in tumor tissue. RmGIB NPs group retained the most fluorescence in tumor tissue after 24h, so the temperature increased to the highest temperature 44.5°C under 808 nm NIR laser (1.5 W cm<sup>-2</sup>) irradiation for 5 min. In addition, the local tumor temperature of mice injected with PBS, free ICG and GIB NPs increased to only 38.1°C, 39.2°C and 41.6°C. The fluorescence intensity of RmGIB NPs in tumor tissue and kidney was stronger than that of GIB NPs, which indicated that the circulation time was longer in vivo after coating with the RBCm. It also indicated that RmGIB NPs had a potential application in photothermal therapy for tumors due to high heat-producing capacity and accumulation stemming from the long circulation of the RBCm. After laser irradiation, nude mice with cervical carcinomas were photographed to observe the size of tumor tissue over two weeks (Figure 6B). In the previous few days, the tumor sizes changed slightly (Figure 6C), indicating that the tumor was inhibited by chemotherapeutic drug GA or laser irradiation. However, compared with the poor anti-tumor efficiency of laser irradiation and free GA, RmGIB NPs with an RTV rate of around 86% had significant efficacy in the tumor inhibited by the chemotherapeutic drug GA and laser irradiation, so there was no re-enlargement of tumor tissue within two weeks. Furthermore, RmGIB NPs had higher anti-tumor efficiency than the GA group with an RTV rate of around

10% or the NIR irradiation group with an RTV rate of around 3%, indicating that chemo-photothermal combination therapy in the tumor was more effective than single therapy *in vivo*.

In the course of treatment, the weight of mice did not change significantly (Figure 6D), indicating that the main organs were not damaged by the drug. To confirm this, H&E staining (Figure 6E) of the main organs (heart, liver, spleen, lung, and kidney) was performed to observe that the cells of each organ were in good shape and not damaged, indicating good biocompatibility of the nanoparticles. Furthermore, H&E staining of tumor tissues showed that there were a large number of necrotic or apoptotic cells in the group with RmGIB NPs but no obvious cell death in the other groups, indicating that RmGIB NPs had a strong anti-tumor effect[36].



**Figure 6.** (A) Infrared thermographic maps in the HeLa tumor-bearing nude mice irradiated by an 808 nm laser. *In vivo* anti-tumor effect of RmGIB NPs under irradiation, (B) photographs of HeLa tumor-bearing mice at different intervals after treatment with different formulations; (C) the calculated relative tumor size (V/V<sub>0</sub>); and (D) the bodyweight of the tumor-bearing mice at various stages. (E) H&E staining of heart, spleen, lung, kidney, and tumor tissue slices for different treatment groups on Day 15:

(i) PBS + NIR; (ii) free GA; (iii) free ICG + NIR; (iv) GIB NPs + NIR; (v) RmGIB NPs; (vi) RmGIB NPs + NIR. Scale bar = 100  $\mu$ m. Data are expressed as the mean  $\pm$  SD of five independent experiments.

#### Conclusions

In summary, a nanocarrier with high loading capacity encapsulated by BSA was constructed, relying on RBCm *in vivo* for stability. GIB NPs were prepared by nab<sup>TM</sup> technology utilizing differences in solubility, resulting in high loading capacities of 24.3  $\pm$  1.2% and 25.0  $\pm$  1.2%, respectively, for GA and ICG. RBCm as a natural cell membrane can be used to prolong the circulating time of nanoparticles *in vivo* to avoid clearance by the immune system, leading to a high accumulation rate in tumor tissue. This resulted in high efficiency and low toxicity for combination therapy *in vivo* and *in vitro*, respectively. In conclusion, RmGIB NPs are a potential platform for cancer treatment due to their high drug loading ability and unique biomimetic capability in avoiding immune clearance.

### **Supplementary materials**

Supplementary data to this article can be found online.

#### **Credit Author Statement**

Yuangang Liu and Shibin Wang conceptualized the project. Pei Wang designed and performed nanoparticle synthesis, and *in vivo* experiments. Fuquan Jiang contributed to the Hemolysis experiment and revision. Biaoqi Chen and Hanxiao Tang performed electron microscopy experiments Xiaojiao Zeng performed the release of drugs.

Duanhua Cai and Mingzhi Zhu performed the isolation of red blood cell membranes.

Ruimin Long and Dayun Yang performed the analysis.

Pei Wang, Fuquan Jiang, Shibin Wang, and Yuangang Liu acquired funding for this project.

Pei Wang, Ranjith Kumar Kankala, and Yuangang Liu designed visualizations of this submission. All authors contributed to the review and editing of the manuscript.

#### **Conflict of interest**

The authors have declared that there are no conflicts of interest in this work.

### Acknowledgments

We are grateful for the assistance of National Marine Economic Innovation and Development Project (16PYY007SF17), the Science Research Foundation of National Health and Family Planning Commission of PRC & United Fujian Provincial Health and Education Project for Tacking the Key Research (WKJ2016-2-22), Program for Innovative Research Team in Science and Technology in Fujian Province University, Natural Science Foundation of Fujian Province of China (2015J05169), Subsidized Project for Postgraduates' Innovative Fund in Scientific Research of Huaqiao University, and Open Project of Key Laboratory of Cancer and Neurodegenerative Disease Transformation in Fujian Province (FMUCN-201801).

#### References

- [1] X. Hu, S. Zhai, G. Liu, D. Xing, H. Liang, S. Liu. Concurrent Drug Unplugging and Permeabilization of Polyprodrug-Gated Crosslinked Vesicles for Cancer Combination Chemotherapy. Adv. Mater. 30 (2018) 1706307-1706314.
- [2] M. Zheng, C. Yue, Y. Ma, P. Gong, P. Zhao, C. Zheng, Z. Sheng, P. Zhang, Z. Wang, L. Cai. Single-Step Assembly of Dox/ICG Loaded Lipid-Polymer Nanoparticles for Highly Effective Chemophotothermal Combination Therapy. ACS nano 7 (2013) 2056-2067.
- [3] D. Lane. Designer combination therapy for cancer. Nat. Biotechnol. 24 (2006) 163-164.
- [4] L. Hui, S. Qin, L. Yang. Upper Critical Solution Temperature Polymer, Photothermal Agent, and Erythrocyte Membrane Coating: An Unexplored Recipe for Making Drug Carriers with Spatiotemporally Controlled Cargo Release. Acs Biomater. Sci. Eng. 2 (2016) 2127-2132.
- [5] Y. Yang, W. Zhu, Z. Dong, Y. Chao, L. Xu, M. Chen, Z. Liu. 1D Coordination Polymer Nanofibers for Low-Temperature Photothermal Therapy. Adv. Mater. 29 (2017) 1703588-1703600.
- [6] Y. Zhang, D. Yang, H. Chen, W. Lim, F. Phua, G. An, P. Yang, Y. Zhao. Reduction-sensitive fluorescence enhanced polymeric prodrug nanoparticles for combinational photothermalchemotherapy. Biomaterials 163 (2018) 14-24.
- [7] Y. Han, R. K. Kankala, S. Wang, A. Chen. Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications. Nanomaterials 8 (2018) 360-387.
- [8] J. Hu, Y. Cheng, X. Zhang. Recent advances in nanomaterials for enhanced photothermal therapy of tumors. Nanoscale 10 (2018) 22657-22672.
- [9] Y. Liu, P. Bhattarai, Z. Dai, X. Chen. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48 (2018) 2053-2109.
- [10] Y. Li, G. Liu, J. Ma, J. Lin, H. Lin, G. Su, D. Chen, S. Ye, X. Chen, X. Zhu, Z. Hou. Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy. J. Control. Release 258 (2017) 95-107.
- [11] W. Tang, W. Tang, A. Szeitz, J. Kulkarni, P. Cullis, S. Li. Systemic study of solvent-assisted active loading of gambogic acid into liposomes and its formulation optimization for improved delivery. Biomaterials 166 (2018) 13-26.
- [12] Y. Yang, Y. Liu, C. Cheng, H. Shi, H. Yang, H. Yuan, C. Ni. Rational Design of GO-Modified Fe3O4/SiO2 Nanoparticles with Combined Rhenium-188 and Gambogic Acid for Magnetic Target Therapy. ACS Appl. Mater. Interfaces 9 (2017) 28195-28208.
- [13] R. K. Kankala, C. Liu, A. Chen, S. Wang, P. Xu, L. Mende, C. Liu, C. Lee, Y. Hu. Overcoming Multidrug Resistance through the Synergistic Effects of Hierarchical pH-Sensitive, ROS-Generating Nanoreactors. Acs Biomater. Sci. Eng. 3 (2017) 2431-2442.
- [14] S. Rohiwal, A. Tiwari, G. Verma, S. Pawar. Preparation and evaluation of bovine serum albumin nanoparticles for ex vivo colloidal stability in biological media. Colloids Surf. A-Physicochem Eng. Asp. 480 (2015) 28-37.
- [15] C. Javier, S. Cristina. Nanoparticle albumin-bound (nab<sup>™</sup>)-paclitaxel: improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer. Eur. J. Cancer 8 (2010) 1-10.
- [16] H. Chen, W. Zhang, G. Zhu, J. Xie, X. Chen. Rethinking cancer nanotheranostics. Nat. Rev. Mater 2 (2017) 17024-17042.

- [17] Q. Sun, Z. Zhou, N. iu, Y. Shen. Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization. Adv. Mater. 29 (2017) 1606628-1606646.
- [18] A. Mikhail, C. Allen. Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. J. Control. Release 138 (2009) 214-223.
- [19] S. Li, L. Huang. Pharmacokinetics and Biodistribution of Nanoparticles. Mol. Pharm. 5 (2008) 496-504.
- [20] E. Blanco, H. Shen, M. Ferrari. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33 (2015) 941-951.
- [21] M. Ernsting, M. Murakami, A. Roy, S. Li. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control. Release 172 (2013) 782-794.
- [22] A. Banerjee, J. Qi, R. Gogoi, J. Wong, S. Mitragotri. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release 238 (2016) 176-185.
- [23] Y. Yang, D. Nie, Y. Liu, M. Yu, Y. Gan. Advances in particle shape engineering for improved drug delivery. Drug Discov. Today (2018) 1359-1368.
- [24] K. Knop, R. Hoogenboom, D. Fischer, U. Schubert. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. Engl. 49 (2010) 6288-6308.
- [25] A. Kolate, D. Baradia, S. Patil, I. Vhora, G. Kore, A. Misra. PEG a versatile conjugating ligand for drugs and drug delivery systems. J. Control. Release 192 (2014) 67-81.
- [26] C. Hu, L. Zhang, S. Aryal, C. Cheung, R. Fang, L. Zhang. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 10980-10985.
- [27] J. Guo, P. Guan, W. Ding, S. Wang, X. Huang, Z. Wang, P. Wang. Erythrocyte membraneencapsulated celecoxib improves the cognitive decline of Alzheimer's disease by concurrently inducing neurogenesis and reducing apoptosis in APP/PS1 transgenic mice. Biomaterials 145 (2017) 106-127.
- [28] S. Thamphiwatana, P. Angsantikul, T. Escajadillo, Q. Zhang, J. Olson, B. Luk, S. Zhang, R. Fang, W. Gao, V. Nizet, L. Zhang. Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management. Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 11488-11493.
- [29] J. Li, X. Zhen, Y. Lyu, Y. Jiang, J. Huang, K. Pu. Cell Membrane Coated Semiconducting Polymer Nanoparticles for Enhanced Multimodal Cancer Phototheranostics. ACS nano 12 (2018) 8520-8530.
- [30] C. Hu, R. Fang, K. Wang, B. Luk, S. Thamphiwatana, D. Dehaini, P. Nguyen, P. Angsantikul, C. Wen, A. Kroll, C. Carpenter, M. Ramesh, V. Qu, S. Patel, J. Zhu, W. Shi, F. Hofman, T. Chen, W. Gao, K. Zhang, S. Chien, L. Zhang. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526 (2015) 118-121.
- [31] J. Copp, R. Fang, B. Luk, C. Hu, W. Gao, K. Zhang, L. Zhang. Clearance of pathological antibodies using biomimetic nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 13481-13486.
- [32] Y. He, J. Qin, S. Wu, H. Yang, H. .Wen, Y. Wang. Cancer cell-nanomaterial interface: role of geometry and surface charge of nanocomposites in the capture efficiency and cell viability. Biomater. Sci. (2019) 2759-2768.
- [33] X. Lin, Y. Cao, J. Li, D. Zheng, S. Lan, Y. Xue, F. Yu, M. Wu, X. Zhu. Folic acid-modified Prussian blue/polydopamine nanoparticles as an MRI agent for use in targeted chemo/photothermal therapy. Biomater. Sci. (2019) 2996-3006.
- [34] M. Xuan, J. Shao, L. Dai, J. Li, Q. He. Macrophage Cell Membrane Camouflaged Au Nanoshells

for in Vivo Prolonged Circulation Life and Enhanced Cancer Photothermal Therapy. Acs Appl. Mater. Interfaces 8 (2016) 9610-9618.

- [35] M. Abbaci, A. Conversano, F. De Leeuw, C. Laplace-Builhe, C. Mazouni. Near-infrared fluorescence imaging for the prevention and management of breast cancer-related lymphedema: A systematic review. Eur. J. Surg. Oncol. (2019) 1-9.
- [36] W. Chen, K. Zeng, H. Liu, Q. Jiang, L. Wang, Y. Liu, H. Wang, L. Deng, Y. Liu. Cell Membrane Camouflaged Hollow Prussian Blue Nanoparticles for Synergistic Photothermal-/Chemotherapy of Cancer. Adv. Funct. Mater. 27 (2017) 1605795.

Sonution